เมนูสำหรับสมาร์ทโฟน เปิดบทความของเว็บบล็อกช่างยนต์ |
เครื่องยนต์ Toyota, Honda, Isuzu และ Nissan ในศูนย์บริการรถยนต์ |
เครื่องยนต์ Mitsubishi, Mazda, Ford และ MG ในศูนย์บริการรถยนต์ |
ช่างยนต์, เครื่องยนต์, ระบบฉีดเชื้อเพลิงแก๊สโซลีน, จังหวะจุดระเบิด, EFI, วินิจฉัยข้อบกพร่อง, เครื่องยนต์แก๊สโซลีน, เครื่องยนต์ดีเซล, คอมมอนเรล, อัตราส่วนผสม, อัตราส่วนการอัด, ชิ้นส่วนเครื่องยนต์, วงจรไฟฟ้า, ศัพท์ช่างยนต์, แรงบิด, กำลัง, Valve Timing Diagram
หน้าแรก
- เครื่องยนต์ในแผนก
- เครื่องยนต์ในศูนย์รถยนต์
- ดีเซลคอมมอนเรล
- ระบบวินิจฉัยข้อบกพร่อง
- ระบบฉีดเชื้อเพลิงแก๊สโซลีน
- EFI
- โครงสร้างเครื่องยนต์หัวฉีด
- จังหวะการฉีดเชื้อเพลิง
- ระบบจุดระเบิด
- วงจรไฟฟ้าเครื่องยนต์หัวฉีด
- วงจรไฟฟ้า Mitsubishi ECI-multi
- วงจรไฟฟ้า Nissan ECCS
- วงจรไฟฟ้า Honda PGM-FI
- เครื่องยนต์แก๊สโซลีน 4 จังหวะ
- เครื่องยนต์ดีเซล 4 จังหวะ
- ชิ้นส่วนเครื่องยนต์
- อัตราส่วนผสมอากาศต่อเชื้อเพลิง
- องค์ประกอบการสันดาป
- Valve Timing Diagram
- Port Timing Diagram
- EGR
- CAT
- พจนานุกรมศัพท์ยานยนต์
- ต้นกำลังงาน
- การเปลี่ยนพลังงานความร้อน
- เครื่องยนต์โรตารี่
- คำศัพท์น่ารู้
- แรงบิด,กำลัง
- เคมีสำหรับช่างยนต์
- คุณธรรมสำหรับช่าง
วันพฤหัสบดีที่ 31 พฤษภาคม พ.ศ. 2555
จังหวะการฉีดเชื้อเพลิง EFI
จังหวะการฉีดเชื้อเพลิงของเครื่องยนต์ EFI
1. การฉีดเชื้อเพลิงของเครื่องยนต์แถวเรียง 4 สูบ
1.1 ฉีดพร้อมกัน
รูปที่ 1 แบบแผนการฉีดเชื้อเพลิงแบบพร้อมกัน
รูปที่ 2 วงจรควบคุมการฉีดเชื้อเพลิงแบบพร้อมกัน
รูปที่ 3 แสดงการฉีดเชื้อเพลิงแบบพร้อมกัน
(เครื่องยนต์หมุน 1 รอบ ทุกสูบฉีดพร้อมกัน โดยฉีดครั้งละครึ่งหน่วยที่ต้องการแต่ละสูบ)
1.2 ฉีดเป็นกลุ่ม
รูปที่ 4 แบบแผนการฉีดเชื้อเพลิงแบบเป็นกลุ่ม
รูปที่ 6 แสดงการฉีดเชื้อเพลิงแบบเป็นกลุ่ม
(เครื่องยนต์หมุน 2 รอบ สูบที่ฉีดคู่กันจะฉีด 1 ครั้ง)
1.3 ฉีดอิสระหรือเรียงตามลำดับการจุดระเบิด
รูปที่ 7 แบบแผนการฉีดเชื้อเพลิงแบบอิสระ
รูปที่ 8 วงจรควบคุมการฉีดเชื้อเพลิงแบบอิสระ
รูปที่ี 9 แสดงการฉีดเชื้อเพลิงแบบอิสระ
(เครื่องยนต์หมุน 2 รอบ แต่ละสูบจะฉีด 1 ครั้ง เรียงตามลำดับการจุดระเบิด)
2. การฉีดเชื้อเพลิงของเครื่องยนต์แถวเรียง 6 สูบ
รูปที่ 10 ตัวอย่างแบบแผนการฉีดเชื้อเพลิงทั้ง 3 แบบของเครื่องยนต์แถวเรียง 6 สูบ
ดูขำขำ คลายความเครียด
ระบบจุดระเบิด
เมนูสำหรับสมาร์ทโฟน เปิดบทความของเว็บบล็อกช่างยนต์ |
เครื่องยนต์ Toyota, Honda, Isuzu และ Nissan ในศูนย์บริการรถยนต์ |
เครื่องยนต์ Mitsubishi, Mazda, Ford และ MG ในศูนย์บริการรถยนต์ |
ระบบจุดระเบิดสำหรับเครื่องยนต์ EFI
ระบบจุดระเบิดสำหรับเครื่องยนต์ EFI รุ่นเก่าเป็นระบบจุดระเบิดแบบใช้จานจ่าย ต่อมาได้พัฒนาเป็นระบบจุดระเบิดแบบไร้จานจ่ายซึ่งมีอยู่ 2 ชนิดคือคอยล์จุดระเบิดร่วมกัน 2 สูบ และคอยล์จุดระเบิดประจำสูบอนึ่งบทความนี้ผู้เขียนได้สรุปย่อมาจากแผนการสอนรายวิชางานระบบฉีดเชื้อเพลิงอิเล็กทรอนิกส์ (รหัสวิชา 2101–2116) ของผู้เขียนในปี พ.ศ. 2547
1. ระบบจุดระเบิดแบบใช้จานจ่าย
ระบบจุดระเบิดแบบนี้ใช้กันมายาวนานตั้งแต่ดั้งเดิมและปัจจุบันยังคงมีใช้อยู่กับเครื่องยนต์ที่มีเทคโนโลยีไม่สูงนักโดยใช้จานจ่าย (Distributor) แบบเก่าจะใช้คอยล์จุดระเบิด (Ignition Coil) รูปทรงกระบอกซึ่งเป็นแบบสนามแม่เหล็กเปิดดังที่แสดงในรูปที่ 1 ต่อมาพัฒนาใช้คอยล์จุดระเบิดแบบสนามแม่เหล็กปิดมีรูปร่างทรงเหลี่ยมดังที่แสดงในรูปที่ 2 และ 3 ซึ่งมีประสิทธิภาพการเหนี่ยวนำสูงกว่าแบบสนามแม่เหล็กเปิด คอยล์จุดระเบิดแบบสนามแม่เหล็กปิดนี้ของฮอนด้ามักติดตั้งอยู่ภายในจานจ่าย ส่วนของโตโยต้าในรุ่นที่ใช้คอยล์จุดระเบิดและตัวช่วยจุดระเบิดอยู่ในจานจ่าย เรียกว่าชุดจุดระเบิดรวม (IIA) (Integrated Ignition Assembly) ดังที่แสดงในรูปที่ 3 อย่างไรก็ตามตัวช่วยจุดระเบิดของรุ่นที่อยู่ภายในจานจ่ายมีข้อจำกัดในด้านของความร้อนที่ตัวช่วยจุดระเบิดได้รับ
รูปที่ 1 คอยล์จุดระเบิดแบบสนามแม่เหล็กเปิดและตัวช่วยจุดระเบิดของ TCCS
รูปที่ 2 คอยล์จุดระเบิดแบบสนามแม่เหล็กปิดของ ECCS
รูปที่ 3 ชุดจุดระเบิดรวม (IIA หรือ Integrated Ignition Assembly) ของ TCCS
รูปที่ 4 วงจรจุดระเบิด ECCS ของนิสสัน
หลักการทำงานของระบบจุดระเบิดแบบใช้จานจ่าย จากรูปที่ 4 เป็นตัวอย่างสำหรับระบบ ECCS ของนิสสัน จะเห็นได้ว่าสัญญาณจากตัวรับรู้ต่างๆ ส่งเข้า ECU หลายสัญญาณมีทั้งสัญญาณหลักคือสัญญาณจากตัวรับรู้มุมเพลาข้อเหวี่ยง (Crank Angle Sensor) กับมาตรอากาศไหล (Air Flow Meter) และสัญญาณรอง เช่นตัวรับรู้อุณหภูมิน้ำ (Water Temperature Sensor) และสวิตช์ลิ้นเร่ง (Throttle Valve Switch) เป็นตัน ซึ่ง ECU ควบคุมจังหวะจุดระเบิดโดยก่อนที่จะถึงจังหวะจุดระเบิด ECU (หรือในบางครั้งนิสสัน จะเรียกว่า ECCS Control Unit) จะส่งสัญญาณแรงเคลื่อนกระตุ้นขา B (Base) ที่ทรานซิสเตอร์กำลัง (Power Transistor) จึงทำให้ทรานซิสเตอร์กำลังทำงานหรือนำไฟฟ้า ดังนั้นกระแสไฟฟ้าจากขั้ว IG ของสวิตช์จุดระเบิดจะไหลผ่านเข้ามายังขั้ว + (บวก) คอยล์จุดระเบิด (Ignition Coil) ผ่านขดลวดไฟแรงต่ำ (ขดลวดปฐมภูมิ) (Primary Winding) ออกที่ขั้ว – (ลบ) คอยล์จุดระเบิด ไปที่ขา C (Collector) ออกขา E (Emitter) ของทรานซิสเตอร์กำลังแล้วลงดิน (Ground) ครบวงจร ทำให้เกิดการเหนี่ยวนำมีสนามแม่เหล็กที่แกนเหล็กอ่อน (Laminated Iron Core) ของคอยล์จุดระเบิด เนื่องจากขดลวดปฐมภูมิหรือขดลวดไฟแรงต่ำมีค่าความต้านทานต่ำ (ประมาณ 1 Ω) กระแสไฟฟ้าที่ไหลผ่านจะสูงมาก ระยะเวลาของแรงเคลื่อนต้านกลับ (Back EMF หรือ Back Electromotive Force) จะสั้นทำให้สนามแม่เหล็กถึงจุดอิ่มตัวได้เร็ว ECU จะกำหนดมุมองศาการจุดระเบิด จากการประมวลผล ปรับแก้ไขมุมการจุดระเบิด มุมดเวลล์ (Dwell Angle) และการชดเชยแรงเคลื่อนแบตเตอรี่ เมื่อถึงจังหวะจุดระเบิด ECU หยุดส่งสัญญาณแรงเคลื่อนไปยังขา B (Base) ทำให้ทรานซิสเตอร์กำลังหยุดนำไฟฟ้าทันทีกระแสไฟฟ้าของขดลวดไฟแรงต่ำจึงหยุดไหลอย่างทันทีทันใด ทำให้สนามแม่เหล็กที่คอยล์จุดระเบิดยุบตัวอย่างรวดเร็วตัดกับขดลวดทุติยภูมิ (Secondary Winding) หรือขดลวดไฟแรงสูง เกิดเหนี่ยวนำแรงเคลื่อนไฟฟ้าสูงประมาณ 20,000 – 35,000 V ไหลออกไปยังสายคอยล์ผ่านหัวโรเตอร์ในจานจ่าย (Distributor) ไปยังสายหัวเทียน (Spark Plug Lead) ของกระบอกสูบที่หัวโรเตอร์หมุนมาตรงกัน แล้วส่งต่อไปยังขั้วหัวเทียน (Plug Connector) เข้าหัวเทียน (Spark Plug) เกิดประกายไฟ
ระบบจุดระเบิดด้วยอิเล็กทรอนิกส์ไม่จำเป็นจะต้องมีคอนเดนเซอร์ (Condenser) หรือคาปาซิเตอร์ (Capacitor) ที่ขั้ว - คอยล์จุดระเบิด แต่จะใช้คอนเดนเซอร์ 250 V 0.47 µF (ไมโครฟารัด) โดยต่อขนานเข้ากับสายไฟฟ้าที่เข้าขั้ว + คอยล์จุดระเบิด เพื่อลดคลื่นสัญญาณรบกวนวิทยุ เรียกอุปกรณ์นี้ว่าตัวกรองคลื่นรบกวนวิทยุ (Noise Filter)
อนึ่งที่ขั้ว - คอยล์จุดระเบิดของนิสสัน มักจะมีตัวต้านทาน (ค่าความต้านทาน 2.2 kΩ) จะต่อไปยังมาตรวัดความเร็วรอบเครื่องยนต์ที่หน้าปัดสำหรับการวัดความเร็วรอบ (แบบเก่า) ซึ่งตัวต้านทานนี้มีหน้าที่ลดแรงเคลื่อนที่เกิดขึ้นจากการเหนี่ยวนำในตัวเอง (Self Induction) ของขดลวดปฐมภูมิ (ที่ขั้ว – คอยล์จุดระเบิด) (ประมาณ 200 – 500 V) ซึ่งเกิดขึ้นพร้อมๆ กับการเหนี่ยวนำแรงเคลื่อนสูงที่ขดลวดทุติยภูมิ
หมายเหตุ ในสภาวะปกติที่ความเร็วรอบเดินเบาในระบบ ECCS ส่วนใหญ่มีจังหวะการจุดระเบิดที่ 15 องศาก่อนศูนย์ตายบนหรือ BTDC (Before Top Dead Center)
รูปที่ 5 ทรานซิสเตอร์กำลัง (Power Transistor) ในระบบจุดระเบิดของ ECCS
รูปที่ 6 แสดงระบบจุดระเบิดโมโทรนิค (Motronic) ของบอสช์ (BOSCH)
รูปที่ 7 หน่วยควบคุมระบบโมโทรนิคของบอสช์ ที่ใช้ทรานซิสเตอร์กำลัง อยู่ภายในกล่อง ECU
รูปที่ 8 วงจรควบคุมการจุดระเบิดของ TCCS ใช้ตัวช่วยจุดระเบิด (Igniter)
โดยรับสัญญาณการจุดระเบิด (IGT) จาก ECU แล้วส่งสัญญาณยืนยันการจุดระเบิด (IGF) ไปยัง ECU
โดยรับสัญญาณการจุดระเบิด (IGT) จาก ECU แล้วส่งสัญญาณยืนยันการจุดระเบิด (IGF) ไปยัง ECU
เครื่องยนต์บางแบบจะไม่ใช้ทรานซิสเตอร์กำลัง แต่จะใช้อุปกรณ์ช่วยการจุดระเบิดหรือตัวช่วยจุดระเบิด (Igniter) จากในรูปที่ 8 จะเห็นได้ว่าวงจรควบคุมการจุดระเบิดของโตโยต้า ใช้ตัวช่วยจุดระเบิด (Igniter) ฮอนด้าเรียกว่า ICM (Igniter Control Module) หรือหน่วยควบคุมการจุดระเบิด ส่วนของซูบารุ และมาสด้าเรียกว่าตัวช่วยจุดระเบิด (Igniter) แต่วงจรภายในจะแตกต่างจากของโตโยต้า โดยที่นิสสัน และมิตซูบิชิเรียกว่าทรานซิสเตอร์กำลัง (Power Transistor) ในที่นี้จะกล่าวถึงหน้าที่วงจรของตัวช่วยจุดระเบิด (Igniter) ของ TCCS วงจรควบคุมมุมดเวลล์ (Dwell Angle Control Circuit) วงจรนี้ทำหน้าที่ควบคุมระยะเวลาของทรานซิสเตอร์กำลัง (ในรูปที่ 8 คือ Tr2) นำไฟฟ้าเพื่อให้กระแสไฟฟ้าที่ไหลผ่านขดลวดปฐมภูมิอิ่มตัวสัมพันธ์กับการเปลี่ยนแปลงความเร็วรอบของเครื่องยนต์ ควบคุมโดยเมื่อตัวช่วยจุดระเบิดเริ่มได้รับสัญญาณจังหวะการจุดระเบิด (IGT หรือ Ignition Timing) ที่ความเร็วรอบเครื่องยนต์ต่ำ วงจรควบคุมมุมดเวลล์จะหน่วงเวลาให้ Tr2 ช้าลง ถ้าความเร็วรอบเครื่องยนต์สูงจะควบคุมให้ Tr2 ทำงานเร็วขึ้น (ECU เผื่อเวลา ON ของ IGT ไว้ให้วงจรควบคุมมุมดเวลล์ในตัวช่วยจุดระเบิดทำงานไว้แล้ว) วงจรป้องกันการทำงานค้าง (Lock–Up Prevention Circuit) มีหน้าที่คอยป้องกันไม่ให้ Tr2 ทำงานค้างไม่ให้เกิดความเสียหายกับขดลวดปฐมภูมิและทรานซิสเตอร์กำลัง วงจรควบคุมมุมการจุดระเบิด (Ignition Control Circuit) มีหน้าที่ขยายสัญญาณที่ได้รับจากวงจรต่าง ๆ เพื่อขับทรานซิสเตอร์กำลัง Tr2 ให้นำไฟฟ้า (ON) และหยุดนำไฟฟ้า (OFF) วงจรป้องกันแรงเคลื่อนไฟฟ้าเกิน (Over–Voltage Prevention Circuit) มีหน้าที่ป้องกันความเสียหายกับคอยล์จุดระเบิดและทรานซิสเตอร์กำลังจากการที่ได้รับแรงเคลื่อนที่สูงเกิน วงจรกำเนิดสัญญาณ IGF (IGF Signal Generation Circuit) สัญญาณยืนยันการจุดระเบิดหรือ IGF (Ignition Failure หรือ Confirmation) เกิดขึ้นโดยทรานซิสเตอร์ (Tr3) ของวงจรยืนยันการจุดระเบิดหยุดนำไฟฟ้าที่ไหลมาจาก ECU จึงเกิดเป็นสัญญาณยืนยันการจุดระเบิด โดยสัญญาณนี้จะส่งกลับไปยัง ECU อย่างต่อเนื่องตลอดเวลาที่มีการเหนี่ยวนำของคอยล์จุดระเบิด (ของ TCCS ในรุ่นเดิมจะตามหลังการสิ้นสุดของสัญญาณ IGT ตามที่แสดงในรูป 9)
เครื่องยนต์ที่ใช้ตัวแปรสภาพไอเสียหรือเครื่องฟอกไอเสียเชิงเร่งปฏิกิริยา กล่อง ECU จะต้องมีหน้าที่ป้องกันการทำงานบกพร่อง (Fail – Safe Function) สำหรับการจุดระเบิด ถ้าหากไม่ได้รับสัญญาณ IGF ติด ๆ กัน 2 ครั้ง ECU จะสั่งตัดการฉีดเชื้อเพลิง ทั้งนี้เพื่อป้องกันมิให้เกิดความเสียหายต่อตัวแปรสภาพไอเสียอันเกิดจากการจุดระเบิดบกพร่องตามที่แสดงในรูป 9
รูปที่ 9 วิธีการวิเคราะห์ปัญหาที่เกิดขึ้นกับสัญญาณยืนยันการจุดระเบิด (IGF) ของ TCCS
อนึ่ง ระบบจุดระเบิดแบบใช้จานจ่ายนี้ในเครื่องยนต์ 1 เครื่อง อาจจะใช้คอยล์จุดระเบิด 2 ลูก โดยใช้จานจ่ายชุดเดียวกัน แต่หัวโรเตอร์มี 2 ชั้น คือแต่ละกระบอกสูบจะมีหัวเทียน 2 หัว (เรียกว่า Twin Plug หรือ Twin Spark) แต่บางแบบ เช่นโตโยต้า 1G–GTE นั้นจะใช้คอยล์จุดระเบิดลูกเดียวโดยที่ขดลวดปฐมภูมิมี 2 ขด (ขดลวดทุติยภูมิมี 1 ขด) (ขดลวดปฐมภูมิขดหนึ่งใช้กับสูบที่ 1, 2 และ 3 อีกขดหนึ่งใช้กับสูบที่ 4, 5 และ 6) เพื่อเพิ่มกระแสไฟฟ้าโดยที่ขดลวดปฐมภูมิจะไม่มีความร้อนสะสมมากเกินไป
2. ระบบจุดระเบิดแบบไร้จานจ่าย
ระบบจุดระเบิดแบบนี้จะไม่ใช้จานจ่าย ซึ่งมีอยู่ 2 ชนิดด้วยกัน
2.1 คอยล์จุดระเบิดร่วมกัน 2 สูบ (Dual–Spark Ignition Coil)
รูปที่ 10 ระบบจุดระเบิดชนิดคอยล์จุดระเบิดร่วมกัน 2 สูบของเครื่องยนต์ 6 สูบ TCCS
ระบบจุดระเบิดแบบนี้นิยมใช้กันมากกับเครื่องยนต์มิตซูบิชิและฮุนไดแบบเพลาลูกเบี้ยวคู่เหนือฝาสูบ (Double Over Head Camshaft หรือ DOHC) ส่วนของโตโยต้านั้นจะเรียกระบบนี้ว่า การจุดระเบิดไร้จานจ่าย (Distributorless Ignition) หรือ DLI แต่ของจีเอ็ม (GM) เรียกว่าการจุดระเบิดโดยตรง (Direct Fire Ignition) หรือ DFI
ระบบจุดระเบิดชนิดคอยล์จุดระเบิดร่วมกัน 2 สูบนั้น ปลายทั้งสองของขดลวดทุติยภูมิ (ดังที่แสดงในรูปที่ 10) จะต่อไปยังหัวเทียน 2 สูบ ที่มีมุมเพลาข้อเหวี่ยงขึ้นหรือลงพร้อมกัน ดังนั้นไฟแรงสูงจึงไหลแบบอนุกรมผ่านไปยังหัวเทียนทั้ง 2 สูบ โดยที่สูบใดสูบหนึ่งอยู่ในจังหวะเริ่มจุดระเบิด (หรือปลายสุดของจังหวะอัด) และอีกสูบหนึ่งอยู่ในช่วงท้ายของจังหวะคาย ดังนั้นประกายไฟแรงสูงที่หัวเทียนของทั้ง 2 สูบนั้นจึงถือได้ว่าเกิดขึ้นพร้อมๆ กัน
หมายเหตุ กระแสไฟฟ้าไหลด้วยความเร็ว 186,000 ไมล์ต่อวินาที (mile/s) หรือ 297,600 (ประมาณ 3 แสน) กิโลเมตรต่อวินาที (km/s)
ข้อจำกัดของระบบจุดระเบิดชนิดคอยล์จุดระเบิดร่วมกัน 2 สูบ คือ
1) ถ้าระบบไฟฟ้าแรงสูงของสูบใดสูบหนึ่งมีปัญหาจากสายหัวเทียนขาดภายในหรือเขี้ยวหัวเทียนห่างมาก จะทำให้ประกายไฟที่หัวเทียนอีกสูบหนึ่งอ่อนด้วยเช่นกัน
2) จังหวะการทำงาน 1 กลวัตร (เพลาข้อเหวี่ยงหมุน 2 รอบ) แต่ละสูบจะมีประกายไฟเกิดขึ้น 2 ครั้ง ครั้งหนึ่งจุดระเบิด ส่วนอีกครั้งไม่จุดระเบิด (คือสูบที่มีประกายไฟช่วงปลายจังหวะคาย)
วิธีการป้องกันปัญหาจากข้อจำกัดทั้ง 2 ที่กล่าวมาแล้วคือ
1) ใช้หัวเทียนทองคำขาว (Platinum) ซึ่งมีอายุการใช้งาน 60,000 - 100,000 km ยาวนานกว่าหัวเทียนธรรมดา (แกนทองแดง) ถึง 3 - 5 เท่า
2) ถ้าตั้งไฟจุดระเบิดผิด โดยตั้งไฟอ่อนกว่ามาตรฐานมากเกินไป อาจจะเป็นเหตุให้เกิดไฟจุดระเบิดในท่อร่วมไอดี เพราะประกายไฟของอีกสูบหนึ่งจะไปเกิดระหว่างลิ้นไอดีและไอเสียเปิดเหลื่อมกัน (Over Lap) ดังนั้นจึงควรปรับตั้งไฟจุดระเบิดตามวิธีการมาตรฐานของทางบริษัท
อนึ่ง คอยล์จุดระเบิดแบบนี้จะมีไดโอดทนแรงเคลื่อนสูง (High Voltage Diode) จึงไม่อาจใช้โอห์มมิเตอร์ธรรมดาตรวจวัดค่าความต้านทานของขดลวดทุติยภูมิ
รูปที่ 11 วงจรควบคุมการจุดระเบิดแบบ DLI (Distributorless Ignition) ของ TCCS (แบบเก่า)
สำหรับการควบคุมการจุดระเบิดระบบไร้จานจ่าย ชนิดคอยล์จุดระเบิดร่วมกัน 2 สูบนั้น แบบของ TCCS ระบบเก่า ECU จะส่งสัญญาณ IGDA (Ignition Distribution Signal A) และ IGDB (Ignition Distribution Signal B) ไปยังตัวช่วยจุดระเบิด (Igniter) ให้กับวงจรเลือกกระบอกสูบ (Cylinder Identification Circuit) เพื่อควบคุมการทำงานของทรานซิสเตอร์กำลังของคอยล์จุดระเบิดแต่ละตัว
2.2 คอยล์จุดระเบิดประจำสูบ (Single–Spark Ignition Coil)
รูปที่ 12 ระบบจุดระเบิดชนิดคอยล์จุดระเบิดประจำสูบของเครื่องยนต์ 6 สูบ TCCS
รูปที่ 13 วงจรควบคุมการจุดระเบิด DIS (แบบเก่า) ของโตโยต้า 2JZ–GTE เดือนพฤษภาคม ค.ศ. 1993
รูปที่ 14 โครงสร้างคอยล์ประจำสูบของบอสช์
ระบบจุดระเบิดแบบนี้ใช้กับเครื่องยนต์ที่มีเทคโนโลยีสูง ให้ประสิทธิภาพการจุดระเบิดดีที่สุด แยกการทำงานอิสระจากกัน แรงเคลื่อนสูงส่งตรงไปยังหัวเทียนที่ปลายขั้วไฟแรงสูงของคอยล์จุดระเบิด จึงไม่เกิดการสูญเสียแรงเคลื่อนเหมือนชนิดอื่นที่ใช้สายหัวเทียน ดังนั้นคอยล์จุดระเบิดของแบบนี้จึงมีขนาดเล็กกะทัดรัด ระบบจุดระเบิดชนิดนี้ TCCS เรียกว่า DIS (Direct Ignition System) หรือระบบจุดระเบิดแบบตรง
อนึ่ง สำหรับคอยล์จุดระเบิดชนิดนี้ต้องใช้ไดโอดทนการเหนี่ยวนำแรงเคลื่อนสูง (High Tension Diode) ด้วย จากในรูป 14 เป็นวงจรระบบเก่าของ TCCS ใช้ตัวช่วยจุดระเบิด (Igniter) รับสัญญาณ IGT เพื่อควบคุมคอยล์จุดระเบิดแต่ละสูบ
เครื่องยนต์บางรุ่น เช่นโตโยต้า 1ZZ–FE, 2ZZ–GE, 1NZ-FE และ 1AZ–FE ได้ใช้คอยล์จุดระเบิดร่วมกันกับตัวช่วยจุดระเบิด (Ignition Coil with Igniter) โดยที่ภายในตัวช่วยจุดระเบิด (Igniter) จะมีทรานซิสเตอร์กำลังและไอซี (IC) กำเนิดสัญญาณ IGF แต่วงจรควบคุมมุมดเวลล์จะอยู่ภายใน ECU
อนึ่ง ระบบจุดระเบิดชนิดคอยล์จุดระเบิดประจำสูบนี้เครื่องยนต์ของซ้าบ (SAAB) และนิสสันใช้มานานแล้ว โดยจะไม่เรียกว่าตัวช่วยจุดระเบิด แต่จะเรียกว่าหน่วยกำลัง (Power Unit) เพราะภายในมีชุดทรานซิสเตอร์กำลังประกอบอยู่ในหน่วยเดียวกันเท่ากับจำนวนสูบ (วงจรภายในไม่เหมือนกับของโตโยต้า) แต่บางรุ่น เช่นเครื่องยนต์นิสสัน VQ25DE, VQ30DE จะใช้ทรานซิสเตอร์กำลังอยู่ที่คอยล์จุดระเบิดของแต่ละสูบ
ระบบจ่ายไฟจุดระเบิดแรงเคลื่อนสูง (High–Tension Ignition Distribution System) หรือ RHZ ชนิดคอยล์จุดระเบิดประจำสูบของบีเอ็มดับเบิลยจะเรียกย่อว่า RZV (Direct Solid–State Ignition Distribution System) หรือระบบจ่ายไฟจุดระเบิดโดยตรงด้วยอิเล็กทรอนิกส์ ซึ่งเริ่มใช้กับบีเอ็มดับเบิลยู ตั้งแต่รุ่นที่ใช้หน่วยควบคุม (Control Unit) ของบอสช์ DME 3.1 (M43) รวมไปถึงในรุ่นที่ใช้หน่วยควบคุมของซีเมนส์ (SIEMENS) DME 3.3.1 (MS 40.1) สำหรับระบบ RZV ในแบบที่ใช้ของซีเมนส์และแบบใหม่ของบอสช์นั้น จะมีทรานซิสเตอร์กำลังอยู่ในชุดเดียวกันกับคอยล์จุดระเบิดและมีไดโอดทนแรงเคลื่อนสูงอยู่ด้วยเช่นกัน คล้ายกับที่แสดงในรูป 14
อนึ่ง เครื่องยนต์ฮอนด้าซิตี้รุ่นใช้คอยล์จุดระเบิด 2 ลูกต่อ 1 สูบ โดยเรียกระบบนี้ว่า i-DSI (Intelligent-Dual & Sequential Ignition) หมายถึงการจุดระเบิดเรียงลำดับ 2 ชุด อัจฉริยะ
ลำดับการจุดระเบิด (Firing Order) ที่ควรรู้สำหรับเครื่องยนต์แถวเรียงและรูปตัววี รวมทั้งเพิ่มเติมสำหรับเครื่องยนต์ที่ใช้คอยล์จุดระเบิดร่วมกัน 2 สูบ ดังแสดงในตารางที่ 1
ตารางที่ 1 ลำดับการจุดระเบิด
ชนิด
เครื่องยนต์
|
การเรียงสูบ
|
ลำดับ
การจุดระเบิด
|
กระบอกสูบที่ใช้คอยล์จุดระเบิดร่วมกัน
|
4 สูบแถวเรียง (ทั่วไป) |
หน้าเครื่อง 1 2 3 4
|
1, 3, 4, 2
|
1-4 และ 2-3
|
4 สูบนอนตรงข้าม (ซูบารุ) |
1 3
หน้าเครื่อง
2 4
|
1, 3, 2, 4
|
1-2 และ 3-4
|
6 สูบแถวเรียง (ทั่วไป) |
หน้าเครื่อง 1 2 3 4 5 6
|
1, 5, 3, 6, 2, 4
|
1-6, 2-5 และ 3-4
|
6 สูบวางรูปตัว V
(จีเอ็ม, โฮลเด้น และอีซูซุ) |
2 4 6
หน้าเครื่อง
1 3 5
|
1, 2, 3, 4, 5, 6
|
1-4, 2-5 และ 3-6
|
6 สูบวางรูปตัว V
(โตโยต้า และมิตซูบิชิ) |
1 3 5
หน้าเครื่อง
2 4 6
|
1, 2, 3, 4, 5, 6
|
1-4, 2-5 และ 3-6
|
วงจรไฟฟ้าเครื่องยนต์หัวฉีด EFI
เมนูสำหรับสมาร์ทโฟน เปิดบทความของเว็บบล็อกช่างยนต์ |
เครื่องยนต์ Toyota, Honda, Isuzu และ Nissan ในศูนย์บริการรถยนต์ |
เครื่องยนต์ Mitsubishi, Mazda, Ford และ MG ในศูนย์บริการรถยนต์ |
ตัวอย่างของเครื่องยนต์ Toyota 4A-GE
ดูขำขำ คลายความเครียด
สมัครสมาชิก:
บทความ (Atom)